
INTERNATIONAL JOURNAL FOR NL~MERICAL METHODS IN FLUIDS, VOL. 22, 835-849 (1996) 

COLLOCATION AND UPWINDING FOR THERMAL FLOW IN 
PIPELINES: THE LINEARIZED CASE 

PHILIP T. KEENAN 
T- Institute for Computational and Applied Mathematics, University of T- at Austin, Austin TX 78745. US.A 

SUMMARY 

Simulating thermal effects in pipeline flow involves solving a coupled non-linear system of first-order hyperbolic 
equations. The advection texm has two large eigenvalues of opposite signs, corresponding to the propagation of 
high-speed sound waves, and one eigenvalue close to or even equal to zero, representing the much slower fluid 
flow velocity, which transports temperature. Standard collocation methods work well for isothermal flow in 
pipelines, but the stagnating eigenvalue causes difficulties when thermal effects are included. In a companion 
paper we formulate and analyse a new numerical method for the non-linear system which arises in thermal 
modelling. The new method applies to general coupled systems of non-linear first-order hyperbolic partial 
differential equations with one degenerate eigenvalue. In the present paper we focus on a linearized constant 
coefficient form of the thermal flow equations. This substantially simplifies presentation of the error analysis for 
the numerical scheme. We also include numerical results for the method applied to the l l l y  non-linear system. 
Both the error analysis and the numerical experiments show that the difficulties that come from the application of 
standard collocation can be overcome by using upwinded piecewise constant fimctions for the degenerate 
component of the solution. 
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1 - INTRODUCTION 

Non-linear systems of first-order hyperbolic partial differential equations arise in the modelling of many 
natural and man-made phenomena. For instance, the pressure, velocity and temperature of a fluid in a 
one-dimensional pipeline can be described by such a system. However, accurate simulation of such 
systems by numerical computation can be difficult. L u s h '  analysed a collocation method which can be 
successfidly applied to isothermal flow in pipelines. It does not, however, apply in certain common cases 
when thermal effects are modelled, because the temperature equation introduces a degenerate 
eigenvalue corresponding to stagnating flow. Keenan29 defined and analysed a new numerical 
method for coupled systems of non-linear first-order hyperbolic partial differential equations with 
one degenerate eigenvalue, which extended in a certain direction the collocation method described by 
L u s h .  Both methods have direct application to the study of one-dimensional fluid flow through 
pipelines. 

The present paper is intended as an introductory companion piece to References 2 and 3. A number 
of technical details obscure the error analysis presented in that work because it treats the general non- 
linear case. The present paper describes and analyses the method in the context of a linear, constant 
coefficient system of equations based on the thennal pipeline equations described in References 2 and 
3. In this special case the error analysis simplifies considembly. For additional details on the 
application of the new method to the 1 1 1  non-linear system of pipeline simulation equations, as 
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well as experimental results and convergence proofs in the general case of non-linear coupled systems, 
see References 2 and 3. 

The model problem is presented in Section 2. Next the new numerical method is defined in Section 3. 
A representative theorem describing asymptotic convergence of the numerical method is presented in 
Section 4. Finally the proof of the theorem is presented in Section 5 .  

2. THE MODEL PROBLEM 

Consider the following system of two coupled first-order constant coefficient hyperbolic partial 
differential equations in one space dimension: 

where p =p(x, t) and T= T(x, t) are sought in the region x E [0, 13, t E (0, 11. Here us, vf, a and b are 
constants, 

v, >> Vf 2 0, 

andp(x, 0), T(x, 0), p(0, t) and T(0, r )  are given. 
The p component here is based on the pressure in the pipeline equations and T is based on 

temperature. Herep is advected at a high speed us compared with T, which flows only slowly. In fact, uf 
can equal zero, in which case T is said to stagnate. It is known that standard collocation can produce 
bizarre behaviour in problems where stagnation can occur, such as in the thermal simulation of 
pipeline flow. For instance, if uf = 0 and b = 0, a change in Tat x = 0 would be instantly propagated as 
a saw-tooth wave down the entire pipe. 

To keep the analysis of the model problem simple,p and T are here only coupled through lower-order 
terms. The actual thermal pipeline equations include additional coupling through x-derivative terms and 
in the coefficient functions. Moreover, vf becomes an additional unknown, representing the fluid 
velocity. All these features complicate the definition and analysis of the numerical method in the general 
case; see References 2 and 3 for details. Also note that all the ideas in both papers generalize 
immediately to the case of systems of n > 2 equations for which all the eigenvalues but one are bounded 
uniformly away from zero. 

3. THE NUMERICAL METHOD 

3.1. Discrete notation for collocation in one space dimension 

Let N be a positive integer and let Ax = 1 /N. Let 

x j = j h ,  j = O , l ,  .... N. 

Similarly let 

xj+1/2=(j+i)Ax, j = O , l ,  ..., N-1 .  

The x, are called the knots and the the midpoints. For any function u(x) let 

uj = U(Xj), uj+1/2 = ~(xj+1/2)* uj,c = I ( U j  + Uj+J  
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For any functionsf(x) and g(x) let 
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The first is the usual L2 inner product; the latter two are discrete versions taken at the midpoints or at the 
knots. Also define the following Lz-like norms: 

llflla = J(f* f ) L 2 9  Iftmz = J C f ,  f ) m 2 9  

I f l m m  = jr(0.  fna~ .... N - I )  l ~ + 1 / ~ l ~  

l f lP = Jcf 9 f)r. 
Next adopt the following notation for Loo-like norms: 

lf l rm = 141. 
js(0 ..... N) I l f l l ~  = max If(x)l, 

xc[O.l] 

Let M be a positive integer and let At = 1 / M .  Let 

t " = n A t ,  n = 0 , 1 ,  ..., M .  

Similarly let 

t"" = (n + @At, n = 0, 1, . . . , M - 1, 

for any 8 E [0, 11. For any b c t i o n  u(r) use 

U" = u(t"), Ir +e - - u(t"+e), ffJ = w + I  + (1 - el#. 
For any fhctionf(x, C) let 

I f l P ( L 2 )  = nEEMJ Ilf(-* t")llL2. 

In general define the composition of any pair of time and space norms in an analogous way. 
For any function u(x) define an xdfference by 

and for any function u(t) and any 8 E (0, 11 use the time difference 

Let 

Pol9  = ( f(x):f is a polynomial in x of degree at most k). 

Let 

p: = (f(x):fl[x,,x,+,] E Pol# and f E c9. 
In particular PA is the class of continuous piecewise linear functions on the mesh defined by the xi, 

while I is the class of piecewise constant bc t ions  discontinuous at the xi. 

3.1.1. Example I: Standard Collocation. Consider the scalar, linear, first-order hyperbolic partial 
differential equation 

ut + au, =f 9 
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with a(x, z) > a0 > 0 for all x E [0, 11 and t E [0, 11, with u(x, 0) = uo(x) and u(0. t) = u,(t) given. 
Standard collocation is a natural way to compute an approximate solution. One seeks a h c t i o n  
U(x, t )  approximating u(x, t )  and defined as follows. At each t", U(x, tR) E PA. Between time levels U 
is extended by linear interpolation in time, meaning U(x, P9) = 8U(x, t"+') + (1 - O)U(x, t") for all 
x, n and 8 E [0, 11. One takes U(x, 0) to be an approximation to uo(x), such as the interpolant. To 
compute Un+l from u" requires N+ 1 equations. One is given by the boundary condition 
U"+'(O) = ul(t"+'). For the rest choose a fixed 8 E [i , 11 and require U(x, t )  to satisfy the differential 
equation at the N points t"+'),j = 0, . . . , N - 1. This yields the system 

with j = 0, . . . , N - 1. Because U is piecewise linear in space and in time, this reduces to the system 

or, in the above notation for discrete derivatives, 
n+9 a Uni9 - n+9 

atvj.,+,e,2 + aj+1/2 x j + 1 / 2  - 4 + 1 / 2 *  (4) 

The p h e  'withj = 0, . . . , N - 1' will henceforth be suppressed as implied by context. 
Define the set of collocation points 

V B  = { ( x ~ + ' , ~ ,  t"+'):j = 0,. . . , N - 1 and n = 0,.  . . ,M - 1). 

In equations such as (4) in which all the subscripts are j + 1 and all the superscripts are n + 8, the 
subscripts and superscripts will henceforth be suppressed. To remind the reader of this convention, the 
phrase 'on VB' will be appended to such equations. This convection will allow the use of subscripts for 
indexing component equations and variables in the case of systems of equations. With this convention 
the equations for standard collocation become 

a,u + aa,u =f on WB. ( 5 )  

3.1.2. Example 2: Upwinding. Suppose now that a(x, t )  in Example 1 is no longer bounded away 
from zero. For simplicity in this example, however, assume a(x, t) 2 0 for all x and t. To avoid the 
instabilities which arise from the application of standard collocation in this case, one can use a 
technique known as 'upwinding'. 

Again one seeks a fimction U(x, t )  approximating u(x, t). Now however, at each t", U(x, t") E Pop1. 
Between time levels U is again extended by linear interpolation in time, meaning 
U(x, F9) = 8U(x, + (1 - 8)U(x, t") for all x ,  n and 8 E (0, 13. Again one takes U(x, 0) to be 
a suitable approximation to uo(x). 

Requiring U to satisfy (2) no longer seems sensible, as the U, term vanishes. Note that so far U(x,, t) 
is undefined for all j and t. To avoid losing information about the slope of r/, one extends the definition 
of U by setting 

u(xji t " )  = u(xj-I/2, t"), 

U(0, t") = U,(t") .  

for j  = 1,. . . , N, and 

One continues to define U at intermediate times by linear interpolation in time. The spatial asymmetry 
in the definition of U(x,, t") is due to the assumed asymmetry in the sign of the coefficient a(x, t). One 
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can interpret u as an entity being advected by a velocity a. U is defined by looking ‘upwind’ relative to 
this velocity, whence the name of the technique. 

To compute Un+l fiom U“ requires Nequations. One chooses a fixed 8 E [i ,1] and requires U(x, t )  to 
approximately satisfy the differential equation at the N points Pe), j = 0, . . . , N - 1. That is, 
rather than require! (2), one instead requires (3). This equation is well defined because of the extended 
definition of U. As in Example 1, this equation can be written compactly as (4). Using the same 
convention of suppressing the subscripts and superscripts, collocation using upwinded piecewise 
constants can be written as 

a,u + aa,u = f on V B ,  

just as in (5) for piecewise linears. 
It turns out that upwinding amounts to adding extra numerical diffusion to the numerical method, 

which provides the stability missing fiom standard collocation. Had one ‘downwinded’ instead, the 
extra diffusion would have the wrong sign, making the method less stable rather than more. 

Figure 1 illustrates the upwinding process in the case of velocity flowing to the right. The dots at 
(xi, II.) show the temperature value at each node. The full lines illustrate the piecewise constant 
representation of temperature between nodes. The broken line shows how a meaningful ‘slope’ can be 
defined for this discontinuous piecewise constant function, which is used as an approximation to the x- 
derivative. The broken line connects (xi, G) with one or the other adjacent node value based on the local 
sign of the fluid velocity. 

3.1.3. Component notation. In both the previous examples the convention of dropping spatial 
subscripts and temporal superscripts was employed. This convention will be continued throughout this 
paper to simplify the notation and to allow the use of subscripts denoting vector and matrix 
components. 

In particular, if A is a matrix, one writes A, for the component of A in the ith row andfi column. The 
identity matrix is represented by the Kronecker delta symbol, defined by 

1 if i = j ,  
0 if i# j .  

xi-2  xi-^ xi xi+l 

Figure 1. Upwinding i l l d o n  
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The summation convention will be used throughout this paper; it implies summations over all 
repeated component indices. Thus if B is another matrix of compatible dimensions, one defines A,,Bjk by 

AiiBik = AijBjk. 
i 

3.2. Dejning the new numerical method 

Consider now the model problem (1) written in vector form 

ut +Au,  + B u  = 0 ,  (6) 

with u = ( p ,  T)T. Here superscript T means transpose. The model problem was chosen to make the 
matrix A diagonal, which simplifies the analysis of the method. Notice that T, only occurs in the T 
equation-in the general case the equations must be rewritten to make this happen. 

The new numerical method combines standard collocation and upwinding as follows. One seeks a 
vector function U(x, t )  approximating u(x, r). At each t", U ,  is to be in PA, but U2 E Moreover, the 
definition of U2 is extended to the knots xi by upwinding as in Example 2. In particular one defines 

U2(xj, t " )  = U2(~j-1/2, t"),  

since vf 2 0. In the general case treated in References 2 and 3, the velocity is one of the unknowns and 
can change sign, which complicates the definition of upwinding. 

when xi-, /2 falls outside the domain [0, 11, one inserts the corresponding boundary condition 
instead. Note how the upwinding technique fits naturally with the specified boundary condition: 

U,(Xo, t " )  = T(0, t") .  

Each component U, is defined to be piecewise linear in time between the t". U(x, 0) is taken to be a 
suitable approximation to uo(x); it can be the interpolant. To incorporate the remaining boundary 
condition, one sets 

Ul(X0, t " )  = P(0,  t"). 

The new numerical method determines I/"+' from Y by requiring that U satisfy a certain linear 
system of equations at the collocation points (x,+~,?, Pe), subject to the special interpretation of 
described in Example 2. Per the conventions previously described, this discrete linear system can be 
written as 

a,u + Aa,u + BU = 0, (7) 

where, as with all following discrete equations, the phrase 'on VB' is to be understood. 

standard algorithm for tridiagonal matrices. 
This discrete linear system may be solved very efficiently using a straightforward modification of the 

4. THEORETICAL RESULTS 

Assumption 1 

that 
Assume 8 E (i, 11 is a given constant. Assume there is a constant KO independent of Ax and At such 

as both Ax and At go to zero. Moreover, assume the system (1) with given initial and boundary data has 
a unique solution which is smooth for all r E [0, 11. 
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Theorem 1 

Consider the model problem (1). Let Assumption 1 hold. Define a discrete solution U by (7). Then 
there is a constant C which depends on KO and on Sobolev norms for u but remains bounded even when 
uf = 0, and which is otherwise independent of Ax and At, such that for Ax and At sufficiently small, 

II u - 4 l P ( L ' )  s ah. 
This theorem is representative of those presented in References 2 and 3. 
As described in References 2 and 3, the results in this paper generalize to non-linear first-order 

hyperbolic systems of any size where exactly one eigenvalue is not bounded uniformly away from zero. 

4.1. Computational results 

The new numerical method for the fully non-linear thermal pipeline equations was implemented by 
the author in C + + and was informally compared (during 1990) against then-state-of-the-art 
commercial codes in widespread use. These codes used ad hoc methods to incorporate temperature 
effects, which generally require very small time steps to maintain stability. Such time step limitations are 
poorly understood, since convergence analyses do not exist for these methods. Owing to the proprietary 
nature of commercial pipeline codes, a detailed comparison cannot be presented. However, the new 
method does seem to be able to use much longer time steps than the comparison methods and the 
analysis does not require any limitation on the time step. For instance, there is no CFL constraint as 
would occur in an explicit method. This is important in networks of pipelines of different lengths, where 
the CFL time step for the system would be limited by the smallest natural time step in the network. 

Numerical experiments were conducted for the fully non-linear thermal pipeline equations,2J in 
which the advection matrix does depend on temperature and the velocity can change sign. Two 
illustrations of actual computed solutions follow. 

For the first example consider a 150 km insulated pipe with a 75 cm internal diameter, carrying 
gaseous methane. Initially everything is at rest, with a pressure of 8000 kPa and a temperature of 20 "C 
throughout the pipe. The ends of the pipe are then opened and the outlet pressure is dropped to 5500 kPa 
over 1 min. Over the next 8-16 h the flow evolves to a steady state. The solution after 12 h was 
computed using 10 km space intervals and 10 min time steps. Figure 2 illustrates the resulting pressure, 
velocity and temperature along the pipe. To fit all three variables on one graph, temperature is shown in 
degrees Celsius, velocity in metres per second and pressure in megapascals. 

0 0  a 0.0 315 75.0 1125 lE0.0 

Figure 2. Steady state. Key: -, T i n  deg. C; - - -, u in m/s; - - - - -, p in d a  
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Table I. Approximate convergence rates 

steady state Small waves 

L2 L* L2 L* 

Pressure 2.0 1.9 0.9 0.9 
Velocity 1.1 1.2 0.9 0.9 
Temperature 1.3 1.4 1 .o 0.9 

For the second example consider a 100 km insulated pipe with a 60 cm internal diameter, carrying 
liquid nsctane. Initially everything is at rest, with a pressure of 1400 kPa and a temperature of 20 "C 
throughout the pipe. Then a 10 s pulse of extra pressure is applied at x = 0. This creates a smooth 
travelling wave in pressure which propagates down the pipe at the sonic velocity of 1.6 km s-l. The 
pressure wave has an amplitude equal to 10 per cent of the initial pressure, i.e. 140 H a .  As it travels, it 
excites identical-looking pulses in velocity and temperature. The solution during the first 45 s was 
computed using 1 km space intervals and s time steps. Figure 3 illustrates the resulting pressure wave 
at 15, 30 and 45 s. Notice the decay in the wave amplitude due both to friction and to numerical 
dissiption in the upwinding process. In both examples the friction factor was 0.014. 

Table I indicates the convergence rates obtained for pressure, velocity and temperature in each of the 
two scenarios described above. In each case both the Lz and LOD norms of the e m r  were measured for 
each component, as compared with a reference solution computed on a much finer mesh. As Ax was 
decreased, At was decreased proportionately. For the steady state simulation the norm of the e m r  12 h 
after opening the valves was examined. For the small-amplitude wave case the norm of the error was 
examined after 15 s. In both cases 8 = 0.6. 

Figure 4 is a log-log plot of the errors at Ax decreases. It shows the Loo norm of the error in pressure 
in each of the two scenarios described above. In each case the base 10 logarithm of the error is plotted 
against the base 10 logarithm of the number of spatial intervals. These same sample points were used in 
constructing Table I. The pressure is in pascals here. The graphs for velocity and temperature look very 
similar and so are not shown hem. 
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Figure 4. Convergence of error 

The table and graph illustrate the empirical observation that even though the first-order nature of 
piecewise constants appears in the asymptotic convergence rates, in practice one may obtain close-to- 
second-order convergence rates. This is not too surprising, since the pressure and velocity approxima- 
tions are second-order (for 0 = l) and isothermal pressure-velocity simulations give good results in 
many situations. Temperature effects generally occur on a much slower time scale than sonic effects, so 
one may expect the constant on the first-order error terms to be small relative to typical practical values 
of Ax. In fact, one sees that in the nearly steady state case, where the temperature varies only slowly, the 
convergence is indeed approximately second-order, at least for pressure, over the parameter range 
shown. Note that this range is more than sufficient for practical computations, since the errors involved 
are well below the error of measurement in a real pipeline. Note also that first-order effects dominate in 
the small-amplitude wave case, since here the temperature changes as sharply and rapidly as the pressure 
and velocity. 

It is interesting to note the effect of temperature on the sonic speed. Using an isothermal model 
produces a substantial change in the sonic velocity. In the methane pipeline the sonic speed decreases 
from 415 m s-' in the adiabatic case to 350 m s-' in the isothermal case. In the octane pipeline it 
decreases from 1630 to 13 12 m s-' . This means that the pulses in Figure 3 would travel about 20 per 
cent slower if temperature effects were omitted, despite the fact that the overall temperature in that 
example is virtually constant. 

5.  ERROR ANALYSIS 

5. I .  Overview 

The a pnon error bound stated in the theorem is derived h m  an energy estimate based on applying 
the discrete scheme to U - R: where W is a discrete interpolant of u. The 'error equation' satisfied by 
U - Wis an inhomogeneous version of the discrete scheme itself, with truncation error terms on the 
right-hand side. In the general case the error equation is then diagonalized by changing variables, 
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following the earlier work of Thomet4 and Luskin,' though for the model problem it is already in 
diagonal form. Next an evolution inequality (28) is developed for certain norms of the error, using a 
discrete m2 inner product of the diagonalized error equation with a certain test function. The test 
function is the s u m  of three terms representing the error, its time derivative and its spacetime second 
derivative, each weighted with a carefully chosen power of Ax. The time derivative test function is the 
only one not used in Reference 1. In developing this evolution inequality, there are many terms to 
estimate; these are summarized in a tableau and bounded one by one. Finally the evolution inequality is 
used to derive the error bounds; in the linear case presented here, the usual Gronwall lemma suffices for 
this last step. 

For a proof in the intermediate case of linear variable coefficient systems, see also Reference 5 .  

5.2. Zle e m r  equation 

Convention 1 

In what follows, let C be a generic constant whose value in any particular equation depends on various 
Sobolev norms of u, on the constants in the model problem and on the constant KO of Assumption 1, but 
which is otherwise independent of the discretization parameters Ax, At and 8. 

Throughout the proof assume that Assumption 1 holds. The number 2 occurs throughout owing to the 
special treatment of Tin the model problem, but the proof generalizes to any size of system with exactly 
one degenerate eigenvalue. 

Consider the model problem in vector form (6), with the numerical method given by (7). Recall that U 
is piecewise linear in time, Uf is piecewise linear in space and U; is discontinuous piecewise constant, 
upwinded by uf. It will now be useful to introduce a discrete interpolant W of u. Such a function is 
defined in the same discrete space as U. Therefore U - W is also in the discrete space and thus is easier 
to analyse than U - u. Define W by Wf(x,) = u;(x,) and W;(X,+~ ,~)  = $(x,+,,J, with W; at the knots 
upwinded by vf, so W;(xj) = W ; ( X , - ~ ~ ) ,  fo r j  = 1,. . . ,N. 

Define the total error 

\Y=u-u, 

the discrete error 

c = w - u  
and the approximation error 

e = u - W .  

Under reasonable conditions it is standard to show that e is small; since Y = e + c, it will suffice to show 
that is small. In particular, the interpolant W satisfies the equation 

a,W+Aa,W+BW = TE, (8) 

where the local truncation error TE is given by 

TE = (a, W - u,) + A(a, W - u,) + B( W - u). 

By standard calculations involving Taylor series expansions, one can show that for some C independent 
of Ax, At and 8, 

lTE"+'1,2 < C[Ax + A? + (6 - +)At], for all n. (9) 
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Similarly one may show 

I(TE;+'+' - TE;+e)ld GC(AxAt + A?). (10) 

Note that this equation does not apply to the second component of the truncation error, which in general 
is one order less accurate owing to the use of piecewise constants. 

Subtracting (8) and (7) shows that the discrete error C satisfies 

where each of the four terms is labelled with a letter for future convenience. 
Thus the discrete error C satisfies an mhomogeneous version of the same equation satisfied by U. 
In the general case the next step in the proof is to diagonalize the matrix A by changing variables. This 

requires introducing extra notation. Fortunately, in the model problem A is already diagonal. The non- 
linear version of (1 1) is further complicated by the appearance of the usual 'shower of terms' from 
differentiating A and B. 

Let 

Now define the test function to be used in the energy analysis: 

where a and /3 are two unspecified but non-negative parameters which will be determined later and 
which will be independent of Ax and At. In the general case an extra factor appears in some terms of cp to 
handle the boundary conditions, but in the constant coefficient model problem it is not needed. 

5.3. The I2 product terms 

Now form the vector inner product of both sides of (1 1) with cp, producing another equation involving 
12 product terms which must be considered individually. The following chart summarizes the situation: 

2 L R R R  

3 t L L R R  

The five terms marked with an 'L! are primarily 'helping' or 'left-hand-side terms'; the other seven are 
right-hand-side terms. The analysis of each product term is conducted as follows. The product equation 
holds at every point ofW9; for each time level t"+' multiply by Ax and sum overall thus forming 
the discrete spatial midpoint-based m2 norm. 

For each right-hand-side term an upper bound will be given for the sum over the For the terms 
marked L, a positive lower bound will be given instead. The bounds may not be obvious at first, but they 
follow in straightforward ways from the properties of the objects involved, in particular from knowing 
that C is piecewise linear in time and either piecewise linear or piecewise constant in space. 
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For non-constant coefficients, additional lower-order terms would appear in the following bounds, as 
in the non-linear case. However, the constant coefficient analysis does include the analysis of all the 
highest-order terms. 
Later some right-hand-side terms will be hidden by direct subtraction and Gronwall's inequality will 

be used to handle the rest. 
Define 

5, = { ~ ~ + ~ , ~ : j  = 0,  . . . , N - 1). 

For any functionf(f) let 
(y+e)+ =fn+l  

and 

(y+e)- =y. 
First consider the three main 'helping terms' A-1 , A-2 and B-3. 

5.3.1. A-1. The steps leading to the bound are spelled out in some detail for this first left-hand-side 
term: 

a,c . c  2 + a,(c2) + (e - ;)At(a,c)z. (13) 

The above equation holds at each point of VB, hence for each t", 

c a,c. c w  ;a,icii2 + (e - ;)Atia,ci;fi2. 
gz 

Here C is a generic constant independent of Ax, At; as always, it can depend on norms of u. 

5.3.2. A-2 

5.3.3. 8-3 

Next upper bounds for right-hand-side terms are derived, beginning with the easiest ones. 

5.3.4. Ll-1 

5.3.5. B-2 
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5.3.6. D-2 

5.3.7. c-1 

5.3.8. C-2 

5.3.9. B-I. In the constant coefficient case this term contains only helping terms, so a lower bound 
is derived: 

5.3.10. A-3. Note that c2 does not appear in this term, so only piecewise linear functions need be 
considered: 

The spatial boundary terms in (21) and (22) turn out to give non-negative helping terms. In the 
general non-linear case this requires a slightly more general test function with a parameter to be chosen 
sufficiently small relative to certain O(1) constants depending only on u. This is based on a trick used by 
Luskin' and pioneered by Thomek4 In the present case, however, it is clear by inspection. The boundary 
term in (21) is 

;[-%c:(o) - V f m  + %c:(l) + ufc;Wl. 
Now ((0) = 0 by choice of boundary conditions and the remaining terms are non-negative because of 
the sign of the velocities. Similar arguments apply to the a,[ terms fiom (22). 

5.3.11. C-3. Use the following formula for summation by parts in time at t = Pe, in which, for 
clarity, time superscripts are not suppressed 

Thus 
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The first term will telescope when summed over n. One can bound the second sum by 

5.3.12. 0-3. As in C-3, sum by parts: 

One can bound the second sum by 

5.4. The evolution inequality 

Now collect all 12 terms to form an evolution inequality. In the general non-linear case one must 
careklly formulate induction hypotheses in order to analyse this inequality. In the present case, 
however, the ordinary discrete Gronwall lemma will suffice. 

In particular take a to be small based on some other order-one constants. Next take B small relative to 
a, again based on order-one constants, and finally require Ax and At to be sufficiently small with respect 
to these other constants. 

A number of right-hand-side terms now can be directly subtracted off from left-hand-side terms. 
These are terms with a smaller multiplier on them, usually written as & above. This results in the 
inequality 

Ax 
64 a,lcl;z + AxlPa,cl;Z + Axa,IAPa,cl;2 + TS - - IPatC"+'-' 1;2 

Gc(lc+l;2 + Ic-l:2 + AxlAPa,c+I:z + hlAPa,c-I;z +A& (26) 
where use was made of Assumption 1 and equations (9) and (10). Here TS stands for the telescoping 
terns in C-3 and &3. Multiplying by At, summing on n and using the fact that the initial error is zero 
by construction, one obtains 

1["12,2 + A~IP~~cI;~(&) + A ~ I A P ~ ~ C ~ I ; ~  GC(ICI;(mz) + A ~ I A P ~ ~ c I $ ( ~ ~ )  + u). (27) 

Carell reading of the proof shows that one can prove a stronger theorem than claimed, in the constant 
coefficient case, but the intent here has been to present the theorem and proof of the non-linear case in a 
simpler context. See also Reference 5 for details of the theorems one can prove in the linear variable 
coefficient case. 

6. CONCLUSIONS 

Standard collocation methods work well for isothermal flow in pipelines, but the stagnating eigenvalue 
causes difficulties when thermal effects are included. 
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In the context of linear, constant coefficient systems we have presented and analysed a numerical 
method which extends standard collocation by using upwinded piecewise constant functions for the 
degenerate component of the solution. Both the error analysis and the numerical results indicate that the 
new method overcomes the difficulties that come from the application of standard collocation to 
problems with one degenerate eigenvalue. In particular the new method is not subject to any stability 
limitation on the time step, even when the degenerate eigenvalue is zero, whereas standard collocation 
develops erroneous oscillations in these situations. Moreover, informal comparisons (during 1990) 
against then-state-of-the-art commercial pipeline simulators in widespread use indicated that the new 
method did seem to be able to successfully use much longer time steps than the comparison methods. 

In a companion pape?l3 these results are extended to general non-linear systems of first-order 
hyperbolic equations with one degenerate eigenvalue, such as arise in the modelling of thermal effects in 
one- dimensional pipeline flow. 
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